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Summary

AT2433, an indolocarbazole antitumor antibiotic, is
structurally distinguished by its aminodideoxypen-

tose-containing disaccharide and asymmetrically
halogenated N-methylated aglycon. Cloning and se-

quence analysis of AT2433 gene cluster and compari-
son of this locus with that encoding for rebeccamycin

and the gene cluster encoding calicheamicin present
an opportunity to study the aminodideoxypentose bio-

synthesis via comparative genomics. The locus was
confirmed via in vitro biochemical characterization of

two methyltransferases—one common to AT2433
and rebeccamycin, the other unique to AT2433—as

well as via heterologous expression and in vivo bio-

conversion experiments using the AT2433 N-glycosyl-
transferase. Preliminary studies of substrate tolerance

for these three enzymes reveal the potential to expand
upon the enzymatic diversification of indolocarba-

zoles. Moreover, this work sets the stage for future
studies regarding the origins of the indolocarbazole

maleimide nitrogen and indolocarbazole asymmetry.

Introduction

Deoxysugars are an essential class of naturally occur-
ring carbohydrates. These deoxygenated and often
highly functionalized sugars present distinctive hydro-
phobic and hydrophilic characteristics critical to their
role in dictating specificity on a tissue, cellular, and/or
molecular level. Among the deoxysugars, deoxyhexo-
ses are arguably the most diverse and best studied to
date [1, 2]. In contrast, while functionalized deoxypento-
ses append a variety of diverse bioactive bacterial
secondary metabolites (Figure 1A), the biosynthesis of
these important sugar attachments remains largely
undefined. Classical metabolic labeling of esperamicin
(Figure 1A, 3) suggested that the esperamicin amino-
dideoxypentose (2,4-dideoxy-4-methylamino-a-L-xylo-
pyranoside) derived from glucose [3], presumably by
loss of C-6 as CO2 in a fashion reminiscent of the
UDP-D-xylose pathway common to primary metabolism
[4, 5]. The elucidation of the calicheamicin (Figure 1A, 1)
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gene locus [6], followed by the overexpression and
biochemical characterization of CalS8 as a UDP-a-D-
glucose dehydrogenase, provided further support for
C-6 oxidative decarboxylation as a general point of
divergence to commit nucleotide sugars to amino-
dideoxypentose biosynthesis [7]. While the early studies
on the biosynthesis of avilamycin (Figure 1A, 4) impli-
cated ribose as the progenitor of the deoxypentose [8],
recent work by Bechthold and coworkers revealed
AviE2 to function as a UDP-a-D-glucuronic acid decar-
boxylase—also consistent with glucose as the deoxy-
pentose progenitor in orthosomycin biosynthesis [9].

Among the naturally occurring indolocarbazole alka-
loids, AT2433 (Figure 1B, 6) shares the unique aminodi-
deoxypentose common to the enediynes calicheamicin
(Figure 1A, 1) and esperamicin (Figure 1A, 3) [10, 11].
The indolocarbazoles—bacterial secondary metabolites
with potent antitumor and neuroprotective properties—
all share a common indolo[2,3-a]pyrrolo[3,4-c]carbazole
core but they are often subdivided into two structural
subgroups [12]. The first includes AT2433 (Figure 1B, 6)
and rebeccamycin (Figure 1B, 7) and is structurally
defined by a common b-N-glucoside appendage. Re-
beccamycin is a potent stabilizer of the topoisomerase
I-DNA covalent complex. However, the addition of the
cationic aminodideoxypentose in 6 abolishes topo-
isomerase I inhibition while enhancing DNA affinity
[13–15]. The second indolocarbazole structural group,
exemplified by staurosporine (Figure 1B, 8), contains
a signature bridging of indole nitrogens by a single gly-
cosyl moiety at C-10 and C-50, and members of this
structural subgroup are potent inhibitors of protein
kinases A, C, and K [16, 17]. The clinical development
of several indolocarbazole derivatives from both classes
has been pursued, including the potent topoisomerase I
poison NB-506, the promising kinase inhibitors UCN-01,
CEP-701/751, and K252a, and a water-soluble analog
(NSC 655649) which, by virtue of semisynthetic modifi-
cation, is a potent topoisomerase II inhibitor [18–22].

Much is known regarding the biosynthesis of indolo-
carbazoles. For example, the gene clusters encoding
for the production of 7 (from Saccharothrix aerocoloni-
genes ATCC39243) [23–25] and 8 (from Streptomyces
sp. TP-A0274) [26] have been elucidated and many of
the gene functions subsequently established via gene
inactivation or heterologous expression. A recent ele-
gant heterologous combinatorial in vivo reconstitution
of components of the 7 pathway also led to the identifi-
cation of 12 bisindole intermediates [27] and a five-stage
biosynthetic pathway for indolocarbazole natural prod-
ucts based upon the 7 pathway has been proposed
[23–26]. With respect to enzymes required for 7 biosyn-
thesis, RebG [28], RebH [29], RebO [30, 31], RebD [31],
and RebM [28, 32] have been confirmed biochemically
as the N-glucosyltransferase, tryptophan halogenase,
7-chloro-tryptophan oxidase, chromopyrrolic acid syn-
thase, and sugar-4-O-methyltransferase, respectively.
Recent efforts toward the enzymatic diversification
of indolocarbazoles revealed RebG to N-glucosylate
unnatural aglycons and also provided indolocarbazole
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Figure 1. The Structures of Pentose-Containing and Indolocarbazole Natural Products

The structures of (A) pentose-containing natural products calicheamicin (1), maduropeptin (2), esperamicin (3), avilamycin (4), evernimicin (5),

and (B) indolocarbazoles AT2433 (6, X = H or Cl), rebeccamycin (7), and staurosporine (8). The aminodideoxypentose common to 1, 3, and 6

has been highlighted by boxes.
N-glucoside regioisomers [28], while RebM could
alklyate unnatural substrates and efficiently utilize non-
natural cofactor analogs [28, 32]. The late steps of 8
biosynthesis have also been recently elucidated via
in vivo strategies to be N-12 glycosylation (StaG) fol-
lowed by a unique P450 (StaN)-catalyzed formation of
the second C-50-carbohydrate-N-13-indole connection,
and StaG was also utilized for indolocarbazole diversifi-
cation [33].

Despite the remarkable body of work described
above, the study of 6 biosynthesis remains an attractive
target, as this pathway promises a variety of new bio-
synthetic targets and tools. In comparison to other indo-
locarbazole alkaloids, 6 is the only naturally occurring
indolocarbazole to have an N-methylated and asymmet-
rically halogenated indolocarbazole core. In addition, 6

contains a novel cationic pentose—a structural motif,
as described above, also shared by enediynes 1 and 3,
which serves as a key DNA recognition element for these
structurally diverse natural products. This unique struc-
tural, and presumably genotypic, element shared by 1,
3, and 6 suggests that a comparison between the 1, 6,
and 7 gene clusters should quickly identify genes com-
mon for aminopentose biosynthesis and thereby pres-
ent a basis from which to more accurately predict the
biosynthesis of uniquely functionalized pentoses. Here
we report the elucidation of the 6 biosynthetic gene clus-
ter from Actinomadura melliaura. The locus was con-
firmed via in vitro biochemical characterization of two
methyltransferases (one common to 6 and 7, the other
unique to 6) as well as via heterologous expression
and in vivo bioconversion experiments using the 6

N-glycosyltransferase. Preliminary studies of substrate
tolerance for these three enzymes reveal the potential
opportunity to utilize these enzymes to expand upon the
general enzymatic diversification of indolocarbazoles.



Insights from the AT2433 Biosynthetic Locus
735
Figure 2. Indolocarbazole Biosynthetic Gene Loci

(A) The organization of AT2433 biosynthetic gene cluster and (B) comparison with the rebeccamycin biosynthetic locus. Arrows represent the

relative ORF size and direction of transcription. Colors designate putative or known functionality. The putative or known functions associated

with each of the genes and closest homologs are outlined in Table 1.
In addition, a comparison of the 1, 6, and 7 gene loci pro-
vides, for the first time, a clear biosynthetic model for the
aminodideoxypentose common to these structurally
diverse natural products.

Results and Discussion

Cloning and Sequencing of the AT2433 Gene

Cluster
Given the notable structural and putative biosynthetic
similarities between 6 and 7, degenerate primers de-
signed to amplify two genes essential to biosynthesis
of the indolocarbazole core—rebD, which encodes the
chromopyrrolic acid synthase, and rebP, which encodes
for a putative P450 oxidase—were used to amplify the
corresponding homologs (designated atmD and atmP,
respectively) from A. melliaura genomic DNA. The PCR-
amplified fragments were confirmed by sequencing and
the confirmed A. melliaura rebD and rebP gene homo-
logs were subsequently employed as DNA probes to
screen an A. melliaura genomic library.

The A. melliaura genomic cosmid library was con-
structed in SuperCos2 and approximately 4000 clones
from this library were screened by colony hybridization
using digoxigenin (DIG)-labeled atmD and atmP. The
positive clones were confirmed by PCR amplification
with the same degenerate primers originally used to
amplify atmD and atmP from the genomic template.
Shotgun sequencing of one positive from this screen,
cosmid pJST1004, revealed a 43 kb insert containing
five genes highly homologous to genes involved in 7
and 8 biosynthesis and genes encoding for NDP-sugar
biosynthesis. Chromosomal walking using DNA probes
designed from each end of the cosmid pJST1004 insert,
followed by shotgun sequencing of a total of 85 kb of
contiguous A. melliauri genomic DNA, allowed for the
completion of the putative biosynthetic locus for 6.

The genomic sequence of this entire 85 kb fragment
(with an average GC content of 70%) was analyzed by
the FRAME program [34] to reveal 48 putative open
reading frames (ORFs), the preliminary annotation of
which derived from BLAST analysis [35]. The sequence
postulated to be relevant to 6 biosynthesis is highlighted
in Figure 2 and resides in a 45 kb fragment containing 35
ORFs designated orf1–orf14. Consistent with the struc-
ture of 6, the putative ORFs identified consist of six
genes (atmA, C, D, H, O, and P) involved in the indolocar-
bazole core biosynthesis, nine genes (atmG, G1, S7–
S10, and S12–S14) involved in the construction and
attachment of carbohydrates, three methyltransferase
genes (atmM, M1, and S10), and four genes (atmB, E,
I, and R) related to resistance or regulation. The pro-
posed function for each of the 35 ORFs and their closest
homologs are listed in Table 1. The sequence upstream
(w6 kb) to orf1 encodes for primarily hypothetical
proteins (average GC content of 64.2 6 1.5%; 86.2 6
2.6% GC in the wobble position). In contrast, orf1–7
displayed an average GC content of 73.3 6 1.6%
(90.6 6 2.1% GC in the wobble position) and the atm
locus displayed an average GC content of 71.0 6 2.5%
(93.3 6 3.2% GC in the wobble position). Similar to the
orf1 50 region, the sequence downstream of the atm
locus (orf8–14) also primarily encodes for hypothetical
proteins (average GC content of 67.6 6 2.1%; 84.7 6
3.6% GC in the wobble position). On the basis of
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Table 1. Deduced Functions of the ORFs in Figure 2

Gene

Amino

Acids Proposed Function

Protein Homolog

(% Identity/% Similarity)

Accession

Number

orf1 509 Unknown protein – –

orf2 372 Unknown protein – –

orf3 275 Unknown protein – –

orf4 879 Unknown protein – –

orf5 496 Unknown protein – –

orf6 618 Hypothetical protein BL02838 (43/59) AAU22609.1

orf7 669 Hypothetical protein BT9727_1156 (25/43) YP_035491.1

atmA 602 Amidotransferase OxyD (56/65) AAZ78328.1

atmS10 238 Putative aminomethylase CalS10 (56/72) AAM70334.1

atmG1 400 O-glycosyltransferase MycB (37/52) AB089954

atmO 478 Putative L-tryptophan oxidase RebO (64/76) AAN01208.1

atmD 1020 CCA synthetase StaD (55/65) AB088119

atmC 534 Putative FAD-monooxygenase RebC (63/74) AB090952

atmP 401 Cytochrome P450 RebP (59/70) SAE414559

atmS13 369 Aminotransferase CalS13 (62/76) AAM94797.1

atmS7 352 Putative dTDP-glucose synthase StrD (57/72) AJ862840

atmM 268 Putative D-glucose O-methyltransferase RebM (56/70) SAE414559

atmM1 195 SAM-dependent methyltransferase Chlo02004218 (43/53) NZ_AAAH01001114

atmB 435 Putative antiporter Orf7 (64/80) AME16952

atmS12 327 dTDP-4-keto-6-deoxy-L-hexose-2,3-reductase CalS12 (66/76) AAM70349.1

atmS14 483 Putative NDP-hexose-2,3-dehydratase CalS14 (51/65) AAM70359.1

atmG 445 N-glycosyltransferase RebG (58/71) SAE414559

atmS8 450 UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase CalS8 (58/71) AAM70332.1

atmS9 329 UDP-glucose 4-epimerase; UDP-glucuronate decarboxylase CalS9 (60/72) AAM70333.1

atmE 175 Regulatory protein MarR (33/54) NZ_AAII01000049

atmR 933 Putative regulatory protein RebR (43/56) CAC93719

atmH 535 Tryptophan halogenase RebH (73/85) SAE414559

atmI 485 Putative transmembrane efflux protein SCO3199 (44/63) SCO939115

orf8 177 Hypothetical protein MAP2477c (50/66) NP_961411.1

orf9 207 Transposase IS4 (52/66) YP_482468.1

orf10 201 Hypothetical protein Nfa30620 (38/56) YP_119273.1

orf11 242 Putative regulator LysR (68/76) BAC68895.1

orf12 166 Hypothetical protein SG7F10.43c (72/81) CAH94367.1

orf13 529 Hypothetical protein Nfa39620 (58/72) YP_120174.1

orf14 520 Unknown protein – –
functional and GC content, we postulate the minimal 6

biosynthetic gene cluster to be contained between
atmA and atmI.

Characterization of N-Glucosyltransferase AtmG
Of the two putative glycosyltransferase genes (atmG
and atmG1) within 6 gene cluster, atmG was proposed
to encode the requisite N-glycosyltransferase based
upon homology to the known indolocarbazole N-glyco-
syltransferase genes rebG and staG. Overproduction of
AtmG in Escherichia coli under a variety of conditions
led to insoluble protein, consistent with previous work
on RebG [28]. Following the strategy previously em-
ployed [28, 33, 36], the same AtmG-E. coli overexpres-
sion strain was subsequently analyzed via bioconver-
sion for its ability to N-glycosylate indolocarbazoles.
Bioconversion of aglycon surrogates 9 and 12 followed
by HPLC analysis (Figure 3A) revealed new products
with characteristic indolocarbazole absorption profiles.
LC-MS characterization was consistent with the forma-
tion of products 10/11 with an estimated bioconversion
yield of 99% and trace production of 13/14, respectively.
Similar biochemical studies with RebG revealed the
same ability to generate a mixture of regioisomers
(10/11 and 13/14) [28]. Under the same conditions, only
starting material was recovered from control E. coli
strains containing an expression vector lacking the
N-glucosyltransferase gene. Notably, the outcome of
this cumulative set of experiments is clearly consistent
with the gene atmG as encoding the requisite N-gluco-
syltransferase involved in 6 biosynthesis.

Characterization of O- and N-Methyltransferases
AtmM and AtmM1

Based upon homology to RebM, AtmM was proposed to
function as the required Glc-40-O-methyltransferase in
the AT2433 pathway. The recent biochemical character-
ization of RebM revealed the rebeccamycin Glc-40-O-
methylase to utilize both ‘‘unnatural’’ substrates and
S-adenosyl-methionine surrogates [28, 32]. Paralleling
the earlier RebM study, the atmM gene was overex-
pressed in E. coli and the corresponding AtmM purified
to homogeneity. Figure 3B reveals the purified AtmM
could efficiently methylate a variety of indolocarbazoles
in vitro. Specifically, compounds 10, 13, and 15–19 were
converted to compounds 20, 21, and 22–26, with yields
ranging from 8% to 99%. As controls, product was not
detected in assays lacking AtmM or SAM or in assays
with 40-O-methylated substrates (e.g., Figure 3C, 7). All
products were characterized by LC-MS and compounds
20–22 and 24 were shown to coelute with previously
characterized standards [28]. Interestingly, AtmM dis-
played a slightly broader substrate scope in comparison
to RebM and allowed for the production of new com-
pounds 25 and 26. Most important, the outcome of this
cumulative set of experiments is also clearly consistent
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with the gene atmM as encoding the requisite Glc-40-O-
methylase involved in 6 biosynthesis.

The sequence analysis of atmM1 revealed a thiopurine
S-methyltransferase domain implicating AtmM1 as the
putative candidate for the 6 maleimide N-methyltransfer-
ase. To assess this postulation, atmM1 was overex-
pressed in E. coli and the catalyst tested both in vivo
and in vitro. The atmM1-E. coli strain was found to con-
vert 17b to 27b via bioconversion (data not shown),
while in vitro assays revealed AtmM1 could methylate a
variety of indolocarbazoles (Figure 3C). Specifically,
compounds 17b, 24b, 30, and 7 were converted to com-
pounds 27b, 28b, 31, and 32 (the complete characteriza-
tion of which has been previously reported [37–40]),
respectively, with yields ranging from 12% to 96% as de-
termined via LC-MS. As controls, products were not de-
tected in assays lacking AtmM1 or SAM. While N-methyl-
maleimido analogs (16a, 16b, and 19) and derivatives
lacking an aglycon carbonyl (9, 10/11) could be pro-
cessed by AtmG and/or AtmM, neither set could be
methylated by AtmM1, further supporting the regiospe-
cificity of AtmM1 and the importance of the C-7 carbonyl
for recognition by AtmM1. Notably, the outcome of this
cumulative set of experiments is clearly consistent with
the gene atmM1 as encoding the requisite maleimide
N-methylase involved in 6 biosynthesis. Unlike the con-
firmed steps catalyzed by AtmG and AtmM described
above, which are common to both 6 and 7 biosynthesis,
the AtmM1-catalyzed N-methylation is unique to the 6

pathway and thus strongly supports our assignment of
this locus as encoding for 6 biosynthesis.

A variety of assays were subsequently performed in
an attempt to delineate the timing of N-glucosylation
and N- versus O-methylation in 6 biosynthesis. Under
identical conditions, the N-methylation of 7, 17b, or 30

led to the production of 32, 27b, or 31 in 38%, 96%,
and 12.4% yield, respectively (Figure 3C). While not a
direct kinetic assessment, this preliminary study impli-
cates N-glycosylated indolocarbazoles to be slightly
better substrates for AtmM and thus suggests N-meth-
ylation, like O-methylation [41], may occur after N-gluco-
sylation. A similar preliminary study designed to probe
N- versus O-methylation (AtmM1 versus AtmM) revealed
the AtmM1-catalyzed conversion of 24b to 28b to pro-
ceed with 86% yield (Figure 3C, iii), while AtmM-cata-
lyzed conversion of 27b to 28b proceeded in 67% yield
(Figure 3C, iv). This study, again while not a kinetic anal-
ysis, suggests the order of N- or O-methylation to be of
fairly indiscriminate nature.

In the context of natural products, simple modifica-
tions, such as methylation, can wield remarkable effects
upon their pharmacological properties [42–44]. For ex-
ample, alterations of indolocarbazole sugar-40-O-meth-
ylation and/or the aglycon maleimide N-methylation
modulate cytotoxicity and/or the specific molecular in-
teractions between the indolocarbazole and DNA and/
or protein targets [28, 43–45]. Moreover, alterations of
these specific molecular interactions between the small
molecule and the target are not always predictive of the
ultimate cytotoxic potency. The recent biochemical
characterization of RebM revealed the rebeccamycin
Glc-40-O-methylase to utilize both ‘‘unnatural’’ sub-
strates and S-adenosyl-methionine cofactor analogs
[28, 32]. Given the slightly broader substrate scope
demonstrated by AtmM (in comparison to RebM), and
the demonstrated ability of AtmM1 to also N-methylate
indolocarbazole surrogates, these new indolocarba-
zole-modifying enzymes may prove to be beneficial
new tools for extending the structural diversity of this
clinically relevant class of natural product.

Aminopentose Biosynthesis and Attachment
Sequence analysis of the newly confirmed 6 gene cluster
revealed seven NDP-sugar biosynthetic genes (atmS7–
10, atmS12–14). Interestingly, homologs for each of
these 6 NDP-sugar genes (calS7–10, calS12–14) were
also found in the 1 biosynthetic locus with % identity/
% similarity ranging from 51/65 to 66/76. In comparison,
the seven genes in 6 gene cluster are more closely colo-
calized than their counterparts in the 1 locus. Based on
the putative functions of this conserved set of gene prod-
ucts, a model for aminodideoxypentose biosynthesis is
proposed (Figure 4A). In this set, the deduced product
of atmS7 is similar to a family of glucose-1-phosphate
nucleotidylyltransferases which initiate most sugar bio-
synthetic pathways by presenting the sugar nucleotide.
The deduced product of atmS8 resembles CalS8, a bio-
chemically characterized UDP-a-D-glucose dehydroge-
nase (UDPGlcDH) previously postulated to be involved in
the 1 aminodideoxypentose biosynthetic pathway [7].
Both AtmS9 and CalS9 show considerable similarity to
UDP-glucose 4-epimerases of Bacillus cereus ATCC
14579 (38% identity, 59% similarity; Table 1) and UDP-
glucuronate decarboxylases of Mus musculus (33%
identity, 50% similarity; Table 1). Several UDP-glucuro-
nate decarboxylases have been characterized in the bio-
synthetic pathway of UDP-xylose required for primary
metabolism in plants [4, 46], vertebrates [47–49], fungi
[50], and bacteria [51], and Hofmann et al. recently con-
firmed AviE2 as the UDP-glucuronate decarboxylase
en route to L-lyxose [9].

The final aminodideoxypentose product requires C-2
deoxygenation, a step known to require two enzymes
(NDP-4-ketosugar 2,3-dehydratase and subsequent
2,3-reductase) within the biosynthesis of 2,6-dideoxy-
hexoses [52, 53]. Genes encoding for homologs for a pu-
tative 2,3-dehydratase (AtmS14/CalS14) and potential
2,3-reductase (AtmS12/CalS12) are conserved within
both the 1 and 6 loci, and thus this comparison presents
the first compelling evidence from which to propose
a similar strategy for aminodideoxypentose C-2-deoxy-
genation. The deduced products of atmS13/calS13
resemble NDP-sugar aminotransferases [54–59] and
are postulated to catalyze the subsequent amine instal-
lation at the C-4 position. Previous studies, in collabora-
tion with Liu and coworkers, identified CalS13 as the
TDP-6-deoxy-a-D-glycero-L-threo-4-hexulose-4-amino-
transferase in the 1 pathway [60]. In contrast, the current
comparative genomics approach clearly reveals CalS13
to be the AtmS13 homolog (62% identity, 76% similarity)
and thereby implicates a potential dual activity for this
aminotransferase. While this needs to be confirmed bio-
chemically, to our knowledge this would be the first ex-
ample of an NDP-ketosugar aminotransferase capable
of operating upon both NDP-hexose and NDP-pentose
scaffolds. The final tailoring event is postulated to be
catalyzed by the methyltransferase homologs AtmS10/
CalS10. Interestingly, the original labeling studies of 4
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Figure 3. Reaction Schemes and HPLC Chromatographs of Representative Assays for N-glycosylation (AtmG), Glucose-40-O-methylation

(AtmM), and Maleimide N-methylation (AtmM1)

In some cases, anomeric stereochemistry is designated by a and b. Parameters for analytical HPLC and product characterization are

described in Experimental Procedures.

(A) AtmG-mediated N-glycosylation of 9 and 12 via in vivo bioconversion: (i) control strain pET-28a(+)-E.coli BL21(DE3) with 9 (50 mM); (ii) AtmG

overexpression strain, pUW-atG221-E.coli BL21(DE3), with 9 (50 mM).
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Figure 4. An Overview of Indolocarbazole Biosynthesis

(A) Proposed biosynthetic pathway for the aminodideoxypentose shared by 1, 3, and 6. N-methylation (Atm/CalS10) may alternatively occur

after the aminodideoxypentose is attached to the aglycon.

(B) Proposed overall biosynthetic pathway for AT2433.

In comparison to other indolocarbazole biosynthetic pathways, the steps unique to AT2433 biosynthesis include the entire aminodideoxypen-

tose pathway highlighted in (A) and the boxed steps in (B).
revealed all alkyl carbons within the 4 N-alkyl-amino-
dideoxypentose (esperamicin A1c, A1b, and A1 corre-
sponding to N-methyl-, N-ethyl-, and N-isopropyl-,
respectively) to derive from methionine [3]. Given
what is known about S-adenosylmethionine-dependent
methyltransferase catalysis, future characterization of
AtmS10/CalS10 may expose a novel enzymatic mecha-
nism for this potential sequential alkylation event.
Finally, the gene atmG1 encodes for a 415 amino acid
O-glycosyltransferase homolog [61, 62] postulated to
catalyze the final attachment of the aminopentose, the
timing of which remains to be deciphered.

Additional Unique Features—Halogenation

and the Source of Indolocarbazole Amine
The first step in indolocarbazole biosynthesis is flavin-
dependent halogenation catalyzed by RebH in 7 biosyn-
thesis [23, 24, 27, 29]. The AT2433 locus encodes for
a RebH homolog (AtmH), but unlike the 7 loci lacks a
gene encoding for the requisite flavin reductase (rebF).
The next step (the flavin-dependent L-amino acid oxi-
dase RebO/AtmO) catalyzes the oxidative deamination
of 7-chloro-L-tryptophan to 7-chloroindole-3-pyruvic
acid (Figure 4B, 36, 37) [30]. The core fusion proceeds
via RebD/AtmD-catalyzed oxidative dimerization of
Trp-derived monomers (e.g., 38–40) to form chromopyr-
rolic acid (Figure 4B, 41–43) [31], and recent studies
revealed RebO/RebD were able to tolerate nonhaloge-
nated, monohalogenated, or dihalogenated substrates
[27, 30, 31]. Although many of the early steps within in-
dolocarbazole core formation are fairly well understood,
the source of the maleimide nitrogen within 38–40
remains controversial.

Early staurosporine labeling experiments revealed the
core nitrogen to be nontryptophan in origin [63]. Recent
in vitro studies revealed the maleimide nitrogen within
41–43 derived from indole 3-pyruvate imine (38–40)
[31]. However, the in vivo nitrogen source en route to im-
ines 38–40 is unknown. Interestingly, the AT2433 gene
cluster contains a gene (atmA) directly upstream of
atmS10, the product of which displays high homology
to OxyD (56% identity, 65% similarity)—a glutamine-
dependent amidotransferase involved in tetracycline
biosynthesis in Streptomyces rimosus (Table 1). We
(B) AtmM-catalyzed in vitro O-methylation of 10, 13, 15–19: (i) 10 (50 mM) and SAM (100 mM); (ii) 10 (50 mM), SAM (100 mM), and AtmM (15 mM);

(iii) 16b (50 mM) and SAM (100 mM); (iv) 16b (50 mM), SAM (100 mM), and AtmM (15 mM).

(C) AtmM1-catalyzed in vitro N-methylation of 17b, 24b, 30, and 7: (i) 17b (50 mM) and SAM (100 mM); (ii) 17b (50 mM), SAM (100 mM), and AtmM1

(15 mM); (iii) 24b (50 mM), SAM (100 mM), and AtmM1; (iv) 27b (50 mM), SAM (100 mM), and AtmM (15 mM). a and b represent stereoisomers.
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postulate AtmA may catalyze nitrogen installation (to
provide imine 38 or 40). Furthermore, given the indis-
criminate nature of RebD (and presumably AtmD), we
propose that the unique substrate specificities of
AtmA and AtmO may dictate the final formation of asym-
metrically halogenated aglycon in AT2433. This unique
feature may also present additional opportunities for
the combinatorial biosynthesis of differentially haloge-
nated indolocarbazole aglycons.

Resistance and Regulation
Based on database comparison, two gene products
may be related to AT2433 biosynthesis regulation. The
first, AtmR, is homologous to RebR and StaR (43% iden-
tity, 56% similarity)—annotated as putative transcrip-
tional activators of 7 and 8 biosynthetic pathways,
respectively [23, 26]. As putative transporters associ-
ated with AT2433 biosynthesis, atmB encodes a 435
amino acid protein homologous to a putative antiporter
from Amycolatopsis balhimycina (64% identity, 80%
similarity; Table 1), while atmI encodes a product which
resembles a putative transmembrane efflux protein from
Streptomyces coelicolor A3(2) (44% identity, 63% simi-
larity; Table 1). Finally, atmE reveals low homology (33%
identity, 54% similarity) with a putative regulatory pro-
tein from Frankia sp. EAN1pec (Table 1).

Significance

The natural product AT2433, an indolocarbazole anti-

tumor antibiotic, is structurally distinguished by its
unique aminodideoxypentose-containing disaccha-

ride and asymmetrically halogenated N-methylated
aglycon. This work reveals the first glimpse of the

AT2433 gene locus with locus confirmation via in vivo
bioconversion and in vitro biochemical assay using

AtmG, AtmM, and AtmM1. Preliminary studies of sub-
strate tolerance suggest the potential opportunity to

utilize these three enzymes for future indolocarbazole
enzymatic diversification. Comparative genomics

based upon the rebeccamycin, calicheamicin, and
newly cloned AT2433 gene loci also provides, for

the first time, a biosynthetic model for the aminodi-
deoxypentose common to these structurally diverse

natural products. Moreover, this work sets the stage
for further studies regarding the origin of indolocarba-

zole maleimide nitrogen and factors which dictate the
biosynthesis of asymmetric indolocarbazoles. Cumu-

latively, this work has both biosynthetic significance
and the potential for clinical impact.

Experimental Procedures

Bacterial Strains, Culture Conditions, Vectors, and Reagents

Actinomadura melliaura sp. nov. SCC 1655 was grown on ISP2 agar

medium (Bacto Laboratories Pty Ltd, Liverpool, NSW, Australia) and

in liquid medium TSB medium (Bacto) at 30ºC. Escherichia coli DH5a

or NovaBlue (Novagen, EMD Biosciences, San Diego, CA) compe-

tent cells were used for standard subcloning, E. coli XL-1 Blue MRF0

(Stratagene, La Jolla, CA) for cosmid library construction, and E. coli

BL21(DE3) (Novagen) for gene expression and in vivo bioconversion

strains. All E. coli strains were grown and transformed as described

previously [64]. SuperCos2, a SuperCos1 (Stratagene) derivative

vector lacking the neomycin resistance gene, was used for cosmid

library construction. Vectors pEZSeq and pSMART-LCkan (Lucigen,

Middleton, WI) were utilized for shotgun library construction for
cosmid sequencing, while pGEM-Teasy (Promega, Madison, WI)

was used for PCR cloning and sequencing. Vectors pET-30Xa/LIC

and pET28a (Novagen) were used for gene expression. Biochemi-

cals, chemicals, media, restriction enzymes, and other molecular

biology reagents were from standard commercial sources. All indo-

locarbazole derivatives employed for enzyme assays and biocon-

version experiments have been described elsewhere [11, 28, 45, 65].

DNA Isolation, Manipulation, and Cloning

Plasmid and cosmid DNA were isolated from E. coli strains using

Qiagen miniprep and large construct kits (Qiagen, Valencia, CA).

The isolation of DNA fragments from excised agarose was accom-

plished with the Qiagen gel clean kit (Qiagen). Restriction endo-

nuclease digestion, ligation, and transformation were performed

according to standard procedures [64] or manufacturers’ recom-

mendations. Chromosomal DNA isolation from A. melliaura SCC

1655 was accomplished via previously described methods [66]

and PCR amplifications were carried out on a GeneAmp PCR system

9700 (Perkin-Elmer/ABI, Foster City, CA) using either PfuTurbo DNA

polymerase (Stratagene) or TaKaRa LA-Taq DNA polymerase

(Takara Mirus Bio, Madison, WI). For Southern analysis, DIG labeling

of DNA probes, hybridization, and detection were performed ac-

cording to the protocols provided by the manufacturer (Roche

Applied Science, Indianapolis, IN). For PCR amplification from geno-

mic DNA and cloning of atmD gene, the following pair of degenerate

primers was used: 50-TCGCCCRCGAGGAGATGATCC-30 (forward)

and 50-GTCGATCSCGAACAGCGCRCTG-30 (reverse); for the atmP

gene: 50-TGGCTGGTYTTCMTSGACCCGCC-30 (forward) and

50-TTCGTGGTSGTCTCGTGSCCGGC-30 (reverse). PCR conditions

were as follows: 5 min at 95ºC, 30 cycles (30 s at 95ºC, 30 s at

57ºC, 1 min at 72ºC), and 10 min at 72ºC with 1 U LA-Taq DNA poly-

merase. All primers were synthesized by Integrated DNA Technolo-

gies (Coralville, IA).

Genomic Library Construction and Screening

A. melliaura SCC 1655 genomic DNA was partially digested with

Sau3AI to give fragments averaging 30–40 kb in size. These frag-

ments were dephosphorylated with calf intestine alkaline phospha-

tase (CIAP) and ligated into the HpaI- and BamHI-digested cosmid

vector SuperCos2. The ligation products were packaged with Giga-

pack III XL packaging extract (Stratagene) as described by the man-

ufacturer and the resulting recombinant phage was used to infect

E. coli XL1-Blue MRF0 cells. The resulting genomic library was

screened by colony hybridization using the PCR-amplified genes

atmD and atmP as probes, respectively, and the resultant positive

clones were further confirmed by PCR amplification directly from

positive cosmids.

DNA Sequencing and Analysis

Shotgun libraries of each positive cosmid were generated by Luci-

gen and shotgun sequencing was accomplished by the UW-Madi-

son Genome Center (University of Wisconsin, Madison). Automated

sequencing was done on double-stranded DNA templates from at

least 700 shotgun subclones for each cosmid. All sequencing data

were subsequently assembled and edited using SeqMan software

(DNAStar). ORF searches were done by using the frameplot software

available at http://www.nih.go.jp/wjun/cgi-bin/frameplot-3.0b.pl.

Database comparison was performed with the BLAST search tools

on the server of the National Center for Biotechnology Information

(Bethesda, MD). The DNA sequence has been deposited in GenBank

under the accession number DQ297453.

Overexpression and Characterization of the

N-Glucosyltransferase AtmG

To generate an AtmG expression construct, the atmG gene was am-

plified from chromosomal DNA using primers atG-EF21 (50-GTCAC

CATATGGCACGGGTGCTCATG-30, NdeI site underlined) and atG-

ER21 (50-TCAGGATCCTCAACTGATCGCTGTCCTG-30, BamHI site

underlined). PCR conditions were as follows: 3 min at 94ºC, 30

cycles (30 s at 94ºC, 30 s at 55ºC, 1 min at 72ºC), and 10 min at 72ºC

with 1 U Pfu DNA polymerase, 5% DMSO. The gel-purified amplicon

was cloned into the NdeI and BamHI sites of pET28a(+) (Novagen,

EMD Biosciences) and the construct was confirmed by sequencing

to yield plasmid pUWG-atGT221 (designed to express an N-terminal

http://www.nih.go.jp/~jun/cgi-bin/frameplot-3.0b.pl
www.ncbi.nlm.nih.gov
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His tag fusion protein). The bioconversion assays were accom-

plished in triplicate using pUW-atG221-E. coli BL21(DE3) with

pET28a(+)-E. coli BL21(DE3) as the control. For each assay, a sin-

gle fresh colony of E. coli BL21(DE3) was inoculated into 3 ml

Luria Bertani (LB) medium containing 50 mg ml21 kanamycin. After

incubation with shaking (250 rpm) at 37ºC for 8–10 hr, an aliquot

of preculture was transferred to 5 ml LB (1:100 dilution), and

the culture was grown at 28ºC with shaking until A600 = 0.6.

Isopropyl-b-D-thiogalactopyranoside was subsequently added

(final concentration of 0.4 mM) and the culture was grown for 1.5 hr.

Compound 9 (or 12) (50 mM final concentration) was added and

the culture was grown for an additional 4 hr and subsequently ex-

tracted with an equal volume of ethyl acetate. After centrifugation,

the organic phase was evaporated, resuspended in 100 ml methanol,

and analyzed by HPLC and LC-MS as described under Product

Isolation and Characterization.

Overexpression and Characterization

of the Glc-40-O-Methyltransferase AtmM

To generate an AtmM expression construct, the atmM gene

was amplified from chromosomal DNA using primers at24M-EF31

(50-GGTATTGAGGGTCGCATGACGGATATCAGCCAG-30, ligation

site underlined) and at24M-ER31 (50-AGAGGAGAGTTAGAGCCCT

AGCTGCGGCGGGCGGC-30, ligation site underlined). PCR condi-

tions were as follows: 3 min at 94ºC, 30 cycles (30 s at 94ºC, 30 s at

55ºC, 1 min at 72ºC), and 10 min at 72ºC with 1 U Pfu DNA polymerase,

5% DMSO. The gel-purified amplicon was treated and annealed with

the ligation-independent cloning (LIC) sites of pET30Xa/LIC vector

(Novagen) and confirmed by sequencing to yield plasmid pUWG-

at24M31 (designed to express an N-terminal His tag fusion protein).

The plasmid pUWG-at24M31 containing the gene of N-His-tagged

atmM was transformed in E. coli BL21(DE3) cells and a fresh colony

was used to inoculate a 3 ml culture in LB medium supplemented

with 50 mg ml21 kanamycin which was grown at 37ºC with 250 rpm

shaking for 8–10 hr. A 0.5 ml aliquot of this preculture was trans-

ferred to 50 ml LB supplemented with 50 mg ml21 kanamycin in

250 ml flasks and the culture was grown at 37ºC with 250 rpm shak-

ing for 8 hr. Approximately 10 ml of this secondary culture was trans-

ferred to 1 l LB medium grown under identical conditions until A600 =

0.8. AtmM overexpression was induced with addition of isopropyl-b-

D-thiogalactopyranoside (IPTG; final 0.4 mM concentration) and the

culture was grown for an additional 17 hr at 18ºC before being har-

vested. Cells were harvested by centrifugation, and the cell pellet

was washed twice (20 mM phosphate buffer [pH 7.5]) and then

stored at 280ºC. All subsequent purification steps were accom-

plished at 4ºC.

The thawed cell pellet from 1 l of culture was resuspended in 30 ml

of binding buffer (20 mM NaH2PO4, 500 mM NaCl, 10 mM imidazole

[pH 7.5]) containing 1 mg ml21 lysozyme and the mixture was incu-

bated on ice for 30 min. The cells were lysed completely by French

press (three rounds at 700 psi; Thermo IEC, Waltham, MA) and the

cell debris was subsequently removed by centrifugation (16,000 3 g,

30 min). The supernatant fraction was filtered (0.45 mm syringe filter;

Nalgene, Rochester, NY) and subjected to FPLC purification using

a HisTrap HP column (1 ml; GE Healthcare Life Sciences [formerly

Amersham Biosciences], Piscataway, NJ). The protein was loaded

on the column with binding buffer and eluted with the same buffer

using a linear imidazole gradient (10–500 mM, flow rate 1 ml

min21, UV detection 280 nm). The desired protein fractions eluted

with 100 mM imidazole were pooled, transferred into assay buffer

(25 mM Tris-HCl, 20 mM NaCl, 0.5 mM DTT, 10% glycerol [pH 8.0])

via a PD-10 column (GE Healthcare Life Sciences), and concentrated

(VIVASPIN 15R 10,000 MWCO; Sartorius AG [formerly Vivascience],

Goettingen, Germany). The protein concentration was measured by

the Bradford assay with bovine serum albumin as a standard (Bio-

Rad, Hercules, CA). The protein was stored at 280ºC.

Typical assays with compounds 10, 13, and 15–19 as substrates

were conducted in a total volume of 100 ml of reaction mixture

(50 mM Tris-HCl [pH 8.0]), including substrate (50 mM), S-adenosyl-

methionine (SAM; 100 mM), and purified protein (15 mM). Reactions

were initiated by the addition of AtmM and incubated at 30ºC

for 3–8 hr. The assay mixture was subsequently extracted with an

equal volume of ethyl acetate, the organics evaporated, and the

recovered material redissolved in 100 ml of methanol and analyzed
by HPLC and LC-MS as described in Product Isolation and Charac-

terization.

Overexpression and Characterization of N-Methyltransferase

AtmM1

To generate an AtmM1 expression construct, the atmM1 gene was

amplified from chromosomal DNA using primers atM1U2-EF31

(50-GGTATTGAGGGTCGCATGCGCCCACTTCTTTAT-30, ligation site

underlined) and atM1U2-ER31 (50-AGAGGAGAGTTAGAGCCTCACG

GGTGCCGATCCCG-30, ligation site underlined). PCR conditions

were as follows: 3 min at 94ºC, 30 cycles (30 s at 94ºC, 30 s at

55ºC, 1 min at 72ºC), and 10 min at 72ºC with 1 U Pfu DNA polymer-

ase, 5% DMSO. The gel-purified amplicon was treated and annealed

with the LIC sites of pET30Xa/LIC vector (Novagen) to yield plasmid

pUWG-atM2U131 (designed to express an N-terminal His tag fusion

protein) which was confirmed by sequencing.

The plasmid pUWG-atM2U131 was transformed in E. coli

BL21(DE3) cells and a fresh colony was used to inoculate 3 ml of

LB medium supplemented with 50 mg ml21 kanamycin at 37ºC with

250 rpm shaking for 8–10 hr. A 0.5 ml aliquot of this seed culture

was transferred to 50 ml LB supplemented with 50 mg ml21 kanamy-

cin in 250 ml flasks and the secondary culture was grown at 37ºC

with 250 rpm shaking for 8 hr. Approximately 10 ml of secondary cul-

ture was transferred to 1 l LB and the culture was grown under the

same conditions to A600 = 0.8. AtmM1 overexpression was induced

with addition of IPTG (final concentration 0.4 mM) and the culture

was grown for an additional 17 hr at 18ºC. Cells were harvested by

centrifugation, and the cell pellet was washed twice (20 mM phos-

phate buffer [pH 7.5]) and then stored at 280ºC.

The thawed cell pellet from 1 l of culture was resuspended in 30 ml

of binding buffer (20 mM NaH2PO4, 500 mM NaCl, 10 mM imidazole

[pH 7.5]) containing 1 mg ml21 lysozyme and the mixture was incu-

bated on ice for 30 min. The cells were lysed completely by French

press (three rounds at 700 psi; Thermo IEC) and the cell debris

was subsequently removed by centrifugation (16,000 3 g, 30 min).

Upon purification AtmM1 lost activity, and thus assays were rou-

tinely conducted at this stage (AtmM1 was estimated to comprise

approximately 30% of the soluble protein in the crude extract by

SDS-PAGE). For AtmM1 purification, the supernatant fraction was

filtered (0.45 mm syringe filter; Nalgene) and subjected to FPLC puri-

fication using a HisTrap HP column (1 ml; GE Healthcare Life Sci-

ences). The protein was loaded on the column with binding buffer

and eluted with the same buffer using a linear imidazole gradient

(10–500 mM, flow rate 1 ml min21, UV detection 280 nm). The desired

protein fractions eluted with 200–300 mM imidazole were pooled,

transferred into assay buffer (25 mM Tris-HCl, 20 mM NaCl,

0.5 mM DTT, 10% glycerol [pH 8.0]) via a PD-10 column (GE Health-

care Life Sciences), and concentrated (VIVASPIN 15R 10,000

MWCO; Sartorius AG). The protein concentration was measured

by using the Bradford assay with bovine serum albumin as a stan-

dard (Bio-Rad). The protein was stored at 280ºC.

The in vivo bioconversion experiments with AtmM1 were identical

to those described for AtmG except that the overexpression strain

was driven by plasmid pUWG-atM2U131 and different aglyons (10,

17b) were employed as substrates. Typical assays with compounds

7, 17b, 24b, and 30 as substrates were conducted in a total volume

of 100 ml reaction mixture (50 mM Tris-HCl [pH 8.0]), including sub-

strate (50 mM), SAM (100 mM), and AtmM1 (w15 mM). Reactions

were initiated by the addition of AtmM1 and incubated at 30ºC for

3–8 hr. The assay mixture was subsequently extracted with an equal

volume of ethyl acetate, the organics evaporated, and the recovered

material redissolved in 100 ml methanol and analyzed by HPLC and

LC-MS as described in Product Isolation and Characterization.

Product Isolation and Characterization

Analytical HPLC utilized a Beckman Coulter Ultrasphere C18 analytical

column (Beckman Coulter, Fullerton, CA; 5 mm; 4.6 3 250 mm; mobile

phase A: H2O; mobile phase B: CH3CN; 0–5 min, 90:10 to 50:50 A:B; 5–

20 min, 50:50 A:B to 100% B; 20–25 min, 100% B; flow rate 1.0 ml

min21; A280 and/or A315) using a Varian Prostar system with a photodi-

ode array detector (Varian Analytical Instruments, Walnut Creek, CA).

ESI-MS analysis of products was performed on an Agilent 1000 HPLC-

MSD SL instrument (Agilent Technologies, Palo Alto, CA).



Chemistry & Biology
742
Acknowledgments

This work was supported in part by National Institutes of Health

grants CA84374, AI52218, and GM70637, and a National Coopera-

tive Drug Discovery Group grant from the National Cancer Institute

(U19 CA113297). J.S.T. is a Romnes fellow. The authors want to

thank Professors Peng George Wang (The Ohio State University)

and David L. Van Vranken (UC Irvine) for graciously providing mate-

rials and Drs. Byron R. Griffith and Aqeel Ahmed for technical assis-

tance. The authors also wish to acknowledge the Analytical Instru-

mentation Center of the School of Pharmacy, UW-Madison, for MS

and NMR support.

Received: March 10, 2006

Revised: April 28, 2006

Accepted: May 4, 2006

Published: July 28, 2006

References

1. He, X., and Liu, H.-w. (2002). Mechanisms of enzymatic C-O

bond cleavage in deoxyhexose biosynthesis. Curr. Opin.

Chem. Biol. 6, 590–597.

2. Rupprath, C., Schumacher, T., and Elling, L. (2005). Nucleotide

deoxysugars: essential tools for the glycosylation engineering

of novel bioactive compounds. Curr. Med. Chem. 12, 1637–1675.

3. Lam, K.S., Gustavson, D.R., Veitch, J.A., and Forenza, S. (1993).

The effect of cerulenin on the production of esperamicin A1 by

Actinomadura verrucosospora. J. Ind. Microbiol. 12, 99–102.

4. Pattathil, S., Harper, A.D., and Bar-Peled, M. (2005). Biosynthe-

sis of UDP-xylose: characterization of membrane-bound

AtUxs2. Planta 221, 538–548.

5. Harper, A.D., and Bar-Peled, M. (2002). Biosynthesis of UDP-

xylose. Cloning and characterization of a novel Arabidopsis

gene family, UXS, encoding soluble and putative membrane-

bound UDP-glucuronic acid decarboxylase isoforms. Plant

Physiol. 130, 2188–2198.

6. Ahlert, J., Shepard, E., Lomovskaya, N., Zazopoulos, E., Staffa,

A., Bachmann, B.O., Huang, K., Fonstein, L., Czisny, A., Whit-

wam, R.E., et al. (2002). The calicheamicin gene cluster and its

iterative type I enediyne PKS. Science 297, 1173–1176.

7. Bililign, T., Shepard, E.M., Ahlert, J., and Thorson, J.S. (2002). On

the origin of deoxypentoses: evidence to support a glucose pro-

genitor in the biosynthesis of calicheamicin. ChemBioChem 3,

1143–1146.

8. Weitnauer, G., Muhlenweg, A., Trefzer, A., Hoffmeister, D., Sus-

smuth, R.D., Jung, G., Welzel, K., Vente, A., Girreser, U., and

Bechthold, A. (2001). Biosynthesis of the orthosomycin antibi-

otic avilamycin A: deductions from the molecular analysis of

the avi biosynthetic gene cluster of Streptomyces viridochromo-
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